I $\quad \square$

INDIAN SCHOOL MUSCAT SECOND TERM EXAMINATION
 ECONOMICS (030)

CLASS: XI

TERM 2
Max. Marks: 40

MARKING SCHEME			
QN	SET	VALUE POINTS	$\begin{gathered} \text { MARKS } \\ \text { SPLIT UP } \end{gathered}$
1.	A	1. Helpful in formulation of policies. 2. Measuring inflation 3. Measuring changes in standard of living. 4. Fixing and increasing salaries of employees. (Any two) OR 1. Quantitatively expressed. 2. Measure relative changes. 3. They are averages. (Any two)	$1+1=2 \mathrm{Marks}$
	B	Standard deviation is the square root of the mean of the squares of the deviations of the values from the mean. Formula $\sigma=\sqrt{\frac{\Sigma d x^{2}}{N}} \quad \text { OR } \quad \sigma=\sqrt{\frac{\left(\Sigma(X-\bar{X})^{2}\right)}{N}}$ OR Merits 1. Based on all values. 2. Rigidly defined. 3. Least affected by fluctuations of sampling. Demerits 1. Difficult to calculate. 2. Affected by extreme values. 3. Cannot be used for comparison.	$1+1=2 \text { Marks }$ Two Merits $1 / 2$ Mark each Two Demerits $1 / 2$ Mark each $1 / 2 \times 4=2$ Marks
	C	Relation between TC and TVC (a) Total cost can never be zero, even when the level of output is zero, because fixed cost is positive and constant at zero level of output. (b) As the level of output increases, Total Cost also increases due to increase in variable cost (c) TC and TVC are S shaped (they rise initially at a decreasing rate, then at a constant rate \& finally at an increasing rate) due to law of variable proportions. (d) TC and TVC curves parallel to each other.	1/2 Mark each $1 / 2 \times 4=2$ Marks 1 Mark

	OR Average Fixed Cost: - Fixed cost per unit output. AFC $=\frac{\text { TFC }}{\text { Output }}$ AFC curve is a rectangular hyperbola. Since TFC remains constant, AFC keeps falling with increase in output but never reaches zero.	$\begin{gathered} \text { Definition } \\ 1 \text { Mark for } \\ \text { shape } \\ 1+1=2 \text { Marks } \end{gathered}$

2.	A	Standard deviation is the square root of the mean of the squares of the deviations of the values from the mean. Formula $\sigma=\sqrt{\frac{\Sigma d x^{2}}{N}} \quad \text { OR } \quad \sigma=\sqrt{\frac{\left(\Sigma(X-\bar{X})^{2}\right)}{N}}$ OR Merits 4. Based on all values. 5. Rigidly defined. 6. Least affected by fluctuations of sampling. Demerits 4. Difficult to calculate. 5. Affected by extreme values. 6. Cannot be used for comparison.	$1+1=2 \text { Marks }$ Two Merits ½ Mark each Two Demerits $1 / 2$ Mark each $1 / 2 \times 4=2$ Marks
	B	Positive Correlation: 1. Price and Supply 2. Income and Expenditure. Negative Correlation: 1. Price and Demand 2. 2. Temperature and Sale of woolens (Any other valid examples)	Two Positive Correlation $1 / 2$ Mark each Two Negative Correlation $1 / 2$ Mark each $1 / 2 \times 4=2$ Marks
	C	The statement is false because MP is rate of change in TP. Hence TP keeps increasing even when MP is falling but is positive.	1 Mark for Justification 1 Mark for reason $1+1=2$ Marks

3.	A	Positive Correlation: 1. Price and Supply 2. Income and Expenditure. Negative Correlation: 1. Price and Demand 2. Temperature and Sale of woolens (Any other valid examples)	Two Positive Correlation $1 / 2$ Mark each Two Negative Correlation $1 / 2$ Mark each $1 / 2 \times 4=2$ Marks
	B	1. Helpful in formulation of policies. 2. Measuring inflation 3. Measuring changes in standard of living. 4. Fixing and increasing salaries of employees.	
		(Any two)	

		2. Measure relative changes. 3. They are averages.	(Any two)

4.	A	Relation between TC and TVC (e) Total cost can never be zero, even when the level of output is zero, because fixed cost is positive and constant at zero level of output. (f) As the level of output increases, Total Cost also increases due to increase in variable cost (g) TC and TVC are S shaped (they rise initially at a decreasing rate, then at a constant rate \& finally at an increasing rate) due to law of variable proportions. (h) TC and TVC curves parallel to each other. OR Average Fixed Cost: - Fixed cost per unit output. $\mathrm{AFC}=\frac{\mathrm{TFC}}{\text { Output }}$ AFC curve is a rectangular hyperbola. Since TFC remains constant, AFC keeps falling with increase in output but never reaches zero.	$1 / 2$ Mark each $1 / 2$ x4 = 2 Marks 1 Mark Definition 1 Mark for shape $1+1=2$ Marks
	B	The statement is false because MP is rate of change in TP. Hence TP keeps increasing even when MP is falling but is positive.	$\begin{gathered} \text { 1 Mark for } \\ \text { Justification } \\ 1 \text { Mark for } \\ \text { reason } \\ 1+1=2 \text { Marks } \\ \hline \end{gathered}$
	C	Standard deviation is the square root of the mean of the squares of the deviations of the values from the mean. Formula $\sigma=\sqrt{\frac{\Sigma d x^{2}}{N}} \quad \text { OR } \quad \sigma=\sqrt{\frac{\left(\Sigma(X-\bar{X})^{2}\right)}{N}}$ OR Merits 1. Based on all values. 2. Rigidly defined. 3. Least affected by fluctuations of sampling. Demerits 1. Difficult to calculate. 2. Affected by extreme values. 3. Cannot be used for comparison.	$1+1=2 \text { Marks }$ Two Merits $1 / 2$ Mark each Two Demerits $1 / 2$ Mark each $1 / 2 \times 4=2$ Marks

5.	A	The statement is false because MP is rate of change in TP. Hence TP keeps increasing even when MP is falling but is positive.	1 Mark for Justification 1 Mark for reason $1+1=2$ Marks

8.	A	Units of capital	Units of labour	Total product	MP	3 Marks
		2	1	10	10	
		2	2	24	14	
		2	3	40	16	
		2	4	50	10	
		2	5	58	8	
		2	6	64	6	
		2	7	68	4	
		2	8	68	0	
		2	9	60	-8	

10.	A	$\begin{aligned} & \text { Given } \mathrm{P}=₹ 5 \quad \Delta \mathrm{P}=15 \quad \Delta \mathrm{Q}=15 \quad \mathrm{Es}=0.5 \mathrm{Q}=? \text { final output }=\text { ? } \\ & \mathrm{Es}=\frac{\Delta \mathrm{Q}}{\Delta \mathrm{P}} \times \frac{\mathrm{P}}{\mathrm{Q}} \quad 0.5=\frac{15}{15} \times \frac{5}{\mathrm{Q}} \quad=0.5 \mathrm{Q}=5 \quad \mathrm{Q}=\frac{5}{0.5} \quad 10 \text { units } \\ & \mathrm{Q}=\mathbf{5 0} \text { units } \\ & \text { Final output }=\mathbf{Q}+\Delta \mathrm{Q}=\mathbf{1 0}+\mathbf{1 5}=\mathbf{2 5} \text { units } \end{aligned}$	$\begin{gathered} 1 \text { Mark for } \\ \text { formula } \\ 1 \text { mark for } \\ \text { finding 'Q' } \\ 1 \text { mark for } \\ \text { finding 'final } \\ \text { output' } \\ 1+1+1=3 \\ \text { marks } \\ \hline \end{gathered}$
	B	Given $\mathrm{P}=₹ 200 \Delta \mathrm{P}=₹ 50 \Delta \mathrm{Q}=50 \quad \mathrm{Es}=1 \mathrm{Q}=?$ final output $=$? $\text { Es }=\frac{\Delta \mathrm{Q}}{\Delta \mathrm{P}} \times \frac{\mathrm{P}}{\mathrm{Q}} \quad 1=\frac{50}{50} \times \frac{200}{\mathrm{Q}} \quad=\mathrm{Q}=200 \text { units }$	1 Mark for formula 1 mark for finding ' Q ' 1 mark for

